Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
preprints.org; 2024.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202404.0708.v1

ABSTRACT

Currently, SARS-CoV-2 has evolved into various variants, including the numerous highly mutated Omicron sub-lineages, significantly increasing immune evasion ability. The development raises concerns about possibly diminished effectiveness of available vaccines and antibody-based therapeutics. Here, we describe those representative categories of broadly neutralizing antibodies (bnAbs) that retain prominent effectiveness against emerging variants including Omicron sub-lineages. The molecular characteristics, epitope conservation, and resistance mechanisms of these antibodies are further detailed, aiming to offer suggestion or direction for the development of therapeutic antibodies, and facilitate the vaccine design with broad-spectrum potential.

2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.19.476892

ABSTRACT

Omicron, a newly emerging SARS-CoV-2 variant, carried a large number of mutations in the spike protein leading to an unprecedented evasion from many neutralizing antibodies (nAbs). Here, we performed a head-to-head comparison of Omicron with other existing highly evasive variants in terms of their reduced sensitivities to antibodies, and found that Omicron variant is significantly more evasive than Beta and Mu variants. Of note, some key mutations occur in the conserved epitopes identified previously, especially in the binding sites of Class 4 nAbs, contributing to the increased Ab evasion. We also reported a broadly nAb (bnAb), VacW-209, which effectively neutralized all tested SARS-CoV-2 variants and even SARS-CoV. Finally, we determined six cryo-electron microscopy structures of VacW-209 complexed with the spike ectodomains of wild-type, Delta, Mu, C.1.2, Omicron, and SARS-CoV, and revealed the molecular basis of the broadly neutralizing activities of VacW-209 against SARS-CoV-2 variants. Overall, Omicron has once again raised the alarm over virus variation with significantly compromised neutralization. BnAbs targeting more conserved epitopes among variants will continue to play a key role in pandemic control and prevention. One sentence summaryStructural and functional analyses reveal that a human antibody named VacW-209 confers broad neutralization against SARS-CoV-2 variants including Omicron by recognizing a highly conserved epitope.


Subject(s)
Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL